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Comparing experts with novices offers unique insights into the functioning of cognition, based on the
maximization of individual differences. Here we used this expertise approach to disentangle the
mechanisms and neural basis behind two processes that contribute to everyday expertise: object and
pattern recognition. We compared chess experts and novices performing chess-related and -unrelated
(visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as
there were no differences in a control task that used the same chess stimuli but did not require
chess-specific recognition. The analysis of eye movements showed that experts immediately and
exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant
aspects. With random chess positions, when pattern knowledge could not be used to guide perception,
experts nevertheless maintained an advantage. Experts’ superior domain-specific parafoveal vision, a
consequence of their knowledge about individual domain-specific symbols, enabled improved object
recognition. Functional magnetic resonance imaging corroborated this differentiation between object and
pattern recognition and showed that chess-specific object recognition was accompanied by bilateral
activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to
bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with
carefully chosen controls and multiple dependent measures, we identified object and pattern recognition
as two essential cognitive processes in expert visual cognition, which may also help to explain the
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mechanisms of everyday perception.
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Chess players face a daunting task: They need to orient them-
selves in an environment filled with different objects that form
numerous functional relations. Yet the very best chess players use
their specialized chess knowledge to find ingenious ways through
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the jungle of possibilities created by chess objects and their func-
tional relations (De Groot, 1978; Shannon, 1950). This remarkable
skill is only one example of many comparably complex situations
people master every day. For instance, people routinely find their
way in everyday life despite being surrounded by numerous ob-
jects and the complex relations between them. People probably
would not even consider the feat of everyday orientation as a kind
of expertise, but it is. People are experts in mastering the daily
routine because of previous exposure to and knowledge about
everyday objects and their relations. The similar complexities in
everyday life and the game of chess is one of the reasons why
the game of chess has been a major paradigm used to investigate
cognition (Charness, 1992; Chase & Simon, 1973; Gobet, de Voogt,
& Retschitzki, 2004; Simon & Chase, 1973). Despite extensive be-
havioral research on the mechanisms behind expertise (for a review,
see Gobet et al., 2004), we are still left wondering which brain
structures mediate experts’ outstanding performance. This is un-
fortunate because examining highly proficient experts enables
insights into the functioning of cognition at the highest level and
represents an avenue to further our understanding of how mind
and brain work in general. Here we examined the mechanisms and
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neural basis behind skilled object and pattern recognition that form
the basis not only of chess expertise but also of people’s everyday
expertise.

Experts possess domain-specific knowledge structures acquired
through extensive and focused exposure to the domain-specific
stimuli (Ericsson, Krampe, & Tesch-Roemer, 1993; Ericsson,
Nandagopal, & Roring, 2009). These knowledge structures, called
chunks (Chase & Simon, 1973) and remplates (Gobet & Simon,
1996b), are composed from several individual objects connected
through their common relations.! Knowledge structures include
information about individual objects, such as the objects’ form and
function. This low-level knowledge enables experts’ superior rec-
ognition of domain-specific objects and, in particular, their func-
tion, even when they are isolated, that is, devoid of their typical
context (Kiesel, Kunde, Pohl, Berner, & Hoffmann, 2009; Saari-
luoma, 1990). Additionally, knowledge structures represent the
statistical nature of a domain-specific environment by encompass-
ing information about typical locations of objects and their rela-
tions, that is, the temporospatial pattern of their occurrence (Chase
& Simon, 1973; Gobet & Simon, 1996b; McGregor & Howes,
2002). Knowledge structures enable predictions about stimulus
input and modulate input processing in a top-down manner. For
instance, they direct experts’ attention automatically toward the
most important stimulus features, enabling fast and efficient pat-
tern recognition. This way, experts reduce the complexity of the
environment and deal with it successfully despite limited cognitive
resources. Novices do not have inherently weaker cognitive abil-
ities than experts do, but they lack specific knowledge structures
that guide perception and feel overwhelmed by the complexity of
the situation (Chase & Simon, 1973; De Groot, 1978). The acqui-
sition of these knowledge structures involving objects and rela-
tions between them is considered not only the core aspect of any
expertise but also a general learning mechanism (Biederman, Mez-
zanotte, & Rabinowitz, 1982; Gobet et al., 2001; Shank & Abel-
son, 1977). The perceptual mechanisms that lead to recognition
and the creation of chess experts’ knowledge structures have been
specified in detail (Gobet & Simon, 1996b, 2000) and have also
been implemented in a computational model (De Groot, Gobet, &
Jongman, 1996; Gobet et al., 2001; Gobet & Simon, 1996b, 2000).

The crucial finding is that knowledge structures are domain
specific and related to the objects and their typical relations. Chess
experts can remember a previously unseen game position of 20 or
more objects on the board after only a brief exposure, typically 5 s,
but their performance drops considerably when the objects are
randomly distributed and the typical relations between them are
disturbed (Chase & Simon, 1973; Gobet & Simon, 1996a). Ma-
nipulating the typical relations through object randomization has
become one of the main research paradigms for uncovering mech-
anisms behind expertise and cognition in general (Ericsson &
Lehmann, 1996; Vicente & Wang, 1998).

Here we compared chess experts and novices on a chess task
where they needed to identify and enumerate certain chess objects
(called pieces) and a nonchess control task where they needed to
enumerate all objects on the board (see Figures 1A and 1B). The
chess enumeration task (Saariluoma, 1985, 1990) requires discrim-
ination between chess objects, whereas the control task only re-
quires discrimination between foreground and background without
regard to the kind of objects (Saariluoma, 1995). We manipulated
the relation between chess objects by presenting normal positions

A Chess Task
Counting knights and bishops

Control Task

Counting all pieces

Normal

Random

Figure 1. A: The stimuli used in the study. In the chess task (left column),
participants had to indicate whether the number of knights and bishops
(indicated by circles, which were not seen by participants) was four. In the
control task (right column), they had to indicate whether the number of all
pieces on the board was 15. The upper row presents normal positions taken
from masters games unknown to participants; the lower row depicts ran-
dom positions obtained by distributing pieces randomly on the board. B:
Trial structure. Baseline stimulus was an initial chess board configuration
with a fixation cross; its duration was jittered. A gap in stimulus presen-
tation was used as a warning about the upcoming stimulus. The actual
chess stimulus (normal and random positions) was then presented. After
the players indicated their answers by pressing one of the response buttons,
the baseline stimulus of the next trial was presented.

with typical relations between objects and random positions where
the objects were randomly scattered on the board, disturbing
typical relations. The chess objects and their relations present the

! Chunks are meaningful units of a few individual objects that are related
to each other: A chair, desk, and a computer together with keyboard would
be a single chunk (see also Miller, 1956). However, templates are large
constellations composed of a core (a large chunk) and slots that can be
filled with other less stable environmental features or with other smaller
chunks. Typical ideas of what different types of rooms look like (e.g.,
office, bedroom) are based on templates.
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core of chess-specific knowledge structures (Chase & Simon,
1973; Gobet & Simon, 1996b, 1998; McGregor & Howes, 2002),
and, just like how people know by experience where the light
switch is typically located in a room, expert chess players should
be able to use their knowledge structures to quickly locate certain
pieces. Scattering chess objects randomly on the board breaks their
typical relations and makes predictions useless. In this situation,
pattern recognition has to rely much more on bottom-up input,
becoming less efficient (Gobet & Simon, 1996a; Gobet & Waters,
2003). Just like the typical schema about rooms will not be helpful
in finding the light switch on, say, the ceiling, expert chess players
will not be able to fully use their complex chess knowledge to find
randomly scattered chess objects. They can, however, still rely on
their superior knowledge about individual chess objects, such as
the chess objects’ form and function (Kiesel et al., 2009; Saari-
luoma, 1990, 1995).

Our design thus captures chess-specific pattern and object rec-
ognition processes. Besides measuring behavioral responses (re-
action time and errors), we also concurrently recorded players’ eye
movements and neural responses (as measured by functional mag-
netic resonance imaging [fMRI]). The eye-movement recordings
are analyzed to assess perceptual strategies used by experts during
domain-related object and pattern recognition, providing important
clues about the cognitive mechanisms behind these recognition
processes (Rayner, 1998; Underwood, 2005). The neuroimaging
data are taken to substantiate the claim of the top-down modulation
of two separate processes—object and pattern recognition—by
expertise. These data will enable the localization of this modula-
tion in the human brain and thus reveal the neural basis behind two
highly important processes in everyday perception. Behaviorally
well specified and well understood cognitive processes can pro-
vide us with unique information on the function of brain structures
associated with these processes (Henson, 2005; Shallice, 2003;
Wilkinson & Halligan, 2004). Although a few studies have used
chess as a domain of investigations, they featured only novices
(Atherton, Zhuang, Bart, Hu, & He, 2003; Nichelli et al., 1994;
Onofrj et al., 1995) or were interested in different phenomena
(Amidzic, Riehle, Fehr, Wienbruch, & Elbert, 2001; Campitelli,
Gobet, & Parker, 2005; Campitelli, Parker, Head, & Gobet, 2008;
Saariluoma, Karlsson, Lyytinen, Teras, & Geisler, 2004). The only
study designed to investigate questions similar to ours (Campitelli,
Gobet, Head, Buckley, & Parker, 2007) unfortunately lacked a
control group of novices.

This is regrettable, because neuroimaging studies comparing
experts with novices provide valuable insight into the nature and
development of cognitive processes behind expertise (Bukach,
Gauthier, & Tarr, 2006). The expertise approach (e.g., Bukach et
al., 2006) offers a crucial advantage in comparison with classical
approaches that hold previous experience constant. The expertise
approach explicitly uses a falsifications strategy (Mill, 1843; Pop-
per, 1968; Wason, 1960) by contrasting experts, who possess
domain-specific knowledge relevant for the task at hand, with
novices, who do not possess this knowledge. This falsifications
strategy is difficult to apply to other approaches where participants
possess equal knowledge.

Specifically, in the context of the present experimental design,
we know that recognition of single isolated objects is related to
inferotemporal (IT) brain areas because the neurons in these areas
are responsible for shape, size, and orientation discrimination

(Logothetis & Sheinberg, 1996; Malach et al., 1995; Tanaka,
1996). We also know that objects are associated with their func-
tions, recognition of which is related to the left posterior middle
temporal gyrus (pMTG) around the occipitotemporal junction
(Johnson-Frey, 2004; Lewis, 2006; Mahon & Caramazza, 2009).
The chess pieces in our experiment are manmade objects that have
characteristic visual features but also clearly specified functions
through chess rules (e.g., bishop moves diagonally). The fMRI
data collected in our experiment will thus show how these brain
areas are connected to chess-specific object recognition. Similarly,
we also know that recognition of complex stimuli made of differ-
ent components is accommodated further anterior in the IT areas
(e.g., Gauthier, Anderson, Tarr, Skudlarski, & Gore, 1997; Palmeri
& Gauthier, 2004; Peissig & Tarr, 2007). In addition, retrieval of
semantic knowledge is closely connected to the medial temporal
lobe (Baxter, 2009; Eichenbaum, Yonelinas, & Ranganath, 2007;
Squire & Zola-Morgan, 1991). Our experimental design will en-
able us to see if any of these brain areas are also connected to
chess-specific pattern recognition. By using a clearly specified
domain-specific task, which taps domain-specific object and pat-
tern recognition, together with a control task, we can ascertain that
the identified neural correlates are related to these processes and
not to familiarity with the stimuli per se.

Finally, the expertise approach will also provide insights on the
development of object and pattern recognition processes. If these
processes required a quantitatively different transformation of the
same knowledge in experts, we would then expect a higher or
lesser engagement of the same brain areas in comparison with the
brain activity of novices. The engagement of additional or even
different brain areas, however, would indicate a qualitative shift
with expertise (Palmeri & Gauthier, 2004).

Method

Participants

Eight experts (mean age = 30 years, SD = 5) and 15 novices
(M age = 29 years, SD = 4), all male and right-handed, partici-
pated in the study. Although our expert sample is not big, it
corresponds to the size of samples used in behavioral research on
expertise (e.g., Bilali¢, McLeod, & Gobet, 2008b, 2008c, 2009;
Brockmole, Hambrick, Windisch, & Henderson, 2008; Kiesel et
al., 2009). Most important, our experts were exceptionally skilled
players. In competitive chess, players get rated on the basis of their
performance against other rated players. The international chess
Elo scale is an interval scale with a theoretical mean of 1,500 and
standard deviation of 200 (Elo, 1978). Beginners have a rating of
around 500, whereas the best players, grand masters, have ratings
over 2,500. Experts are players with a rating of 2,000 or more Elo
points. Our experts were 3 standard deviations above the average
player: on average, 2,108 = 148 Elo points. Novice players were
hobby players who played chess occasionally for recreation. Writ-
ten informed consent was obtained from all participants, and the
study was approved by the ethics committee of Tiibingen Univer-
sity.

Stimuli and Design

In the chess task, players had to decide whether there were
exactly four knights and bishops (of either color). In the control
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task, players had to decide whether there were exactly 15 pieces.
In both tasks, 20 normal and 20 random positions with between 15
and 18 pieces (and four to six knight and bishops) were presented.
The number of correct “yes” and “no” responses was equal in all
conditions. The normal positions were taken from a large database
of over four million games (ChessBase Mega Base 2007; Chess-
Base GmbH, Hamburg, Germany; http://www.chessbase.com).
These were normal middle-game positions by masters and it is
highly unlikely that the games were known to the participants. The
random positions were generated by distributing the pieces on the
board randomly using the rule that any piece of either color can
appear on any square (Gobet & Waters, 2003; Vicente & Wang,
1998).

The dimension of the whole stimulus was 305 X 305 pixels,
while the board with the pieces had a dimension of 276 X 276
pixels. The dimension of a single square was 34 X 34 pixels. The
physical dimensions of the stimulus were 256 mm for the whole
stimulus, 230 mm for the board, and 29 mm for the single square.
The setup resulted in a visual field of 14.6° for the whole stimulus,
13.2° for the chess board, and 1.65° for a single square in the
board.

Procedure

Before the actual sessions, participants were given two practice
trials for each task. The structure of the trial is presented diagram-
matically in Figure 1B. In a single trial (see Figure 1B), a chess
board with the initial position of a game with a fixation cross in the
middle was presented for 6-10 s (baseline). After a short gap (0.5
s), the target stimulus was presented. The stimulus disappeared
after participants indicated their response, and the baseline of the
next trial was presented. There were four runs, two for each task,
with only one task in a single run. In one run, 10 normal and 10
random trials were presented in random order. The runs were block
randomized and counterbalanced across participants. The reaction
time (or the time to complete the task) was the time from stimulus
appearance until response.

Apparatus

Participants’ eye movements were recorded by an infrared re-
mote long-range eye-tracking device with a sampling rate of 50 Hz
(iView X MEyeTrack Long Range; SensoMotoric Instruments;
Berlin, Germany; http://www.smi.de). The eye-tracking system
had an error of 0.5-1°, corresponding to 8.6—17.1 mm (or less than
half a square) on the board. In both tasks, participants indicated
their decision by pressing one of two buttons of an MRI-
compatible response device held in the right hand (the left button
was for YES and the right button was for NO). All devices were
MRI compatible and did not interfere with participants’ perfor-
mance. Brain activity was measured in a 3-T scanner (Siemens
Trio; Siemens AG, Erlangen, Germany) with a 12-channel head
coil at the fMRI center in Tiibingen, Germany (see Figure S1 in the
supplemental materials). Participants saw the stimuli through a
mirror mounted on the head coil. The stimuli were projected onto
a screen above the head of the participants via a video projector in
the adjacent room (see the supplemental materials).

Statistical Analysis

Behavioral analysis. We only considered the correct trials
and those that were not longer than 2.5 standard deviations from
the average reaction time of each participant in each experimental
condition. We used a 2 (expertise: experts, novices) X 2 (type of
position: normal, random) analysis of variance (ANOVA) for the
chess and control tasks, separately. Additionally, we tested for the
difference between normal and random positions using a ¢ test for
dependent samples, separately for both experts and novices.

Eye-movement analysis. We used a 9-point calibration with
biquadratic functions before each run. We created a program in
MatLab 7.1 (MathWorks Inc., Natic, MA; http://www.mathworks
.com) to analyze the eye-movement data of five experts and six
novices (technical problems prevented eye-movement measure-
ment in the other participants). First, we defined a fixation as an
event where participants kept their eyes within a diameter of 34
pixels for 80 ms or more. The diameter of 34 pixels is roughly the
size of a square on the chess board. We then extracted the fixations
for each participant on each position in each task. The number of
fixations and average duration of fixation among expert and novice
chess players in the chess and control tasks are provided in the
supplemental materials.

To differentiate between relevant and irrelevant objects in the
stimuli, we identified the areas of interest for each position in the
chess task. These were the knights and bishops (see Figure 1A). In
the control task, participants had to enumerate all pieces, and all
pieces were therefore taken as areas of interest. We then calculated
the distance in pixels from every fixation to the center of the
nearest area of interest. For each trial, the distances were then
averaged separately for individual participants. These averaged
distances were used in a 2 (expertise: experts, novices) X 2 (type
of position: normal, random) ANOVA for the chess and control
tasks, separately. We did the same distance analysis for the initial
and subsequent fixations. We also analyzed the first second of each
trial in both chess and control tasks (see the supplemental mate-
rials).

Neuroimaging analysis. The whole brain was covered using
a standard echo-planar-imaging sequence with the following pa-
rameters: repetition time (TR) = 2.5 s; field of view = 192 X 192;
echo time (TE) = 35 ms; matrix size = 64 X 64, 36 slices with a
thickness of 3.2 mm + 0.8 mm gap resulting in voxels with the
resolution of 3 X 3 X 4 mm®. Anatomical images covering the
whole brain with 176 sagittal slices were obtained after the func-
tional runs using an MP-RAGE sequence with a voxel resolution
of 1 X 1 X 1 mm?® (TR = 2.3 s, TI [inversion time] = 1.1 s, TE =
2.92 ms).

All fMRI data were analyzed using the Statistical Parametric
Mapping software package (SPM5; Wellcome Department of Im-
aging Neuroscience, London, United Kingdom; http://www fil.ion
.ucl.ac.uk/spm). Data preprocessing involved spatial realignment
to the mean image including unwarping, coregistration of the
anatomical image to the mean EPI (echo planar image), and the
unified segmentation procedure. The normalization parameters to
the Montreal Neurological Institute (MNI) brain template (MNI
space; MNI Template Avgl52T1) from segmentation were used
for spatial normalization of the functional images at a voxel size of
3 X 3 X 3 mm? and of the anatomical images with a voxel size of
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1 X 1 X 1 mm®. Finally, the data were spatially smoothed, using
a Gaussian filter with 8-mm full width at half maximum.

In the chess task, we modeled the first second of each trial
separately from the rest of the trial (modeling the last second
produced similar results). The use of the first second ensured that
the activation results would not be affected by differences in trial
durations. Similar approaches have been used previously (e.g.,
Iacoboni et al., 2004; Koenig et al., 2005); in the supplemental
materials, we provide further evidence that this approach effec-
tively controls for the length of trials. It is important to note that
eye-movement parameters (number and duration of fixations) were
almost identical for experts and novices within the first second of
the trial (see the supplemental materials). The button press was
also explicitly modeled, whereas the baseline was implicitly mod-
eled in a general linear model. Modeling of the time series of
hemodynamic activation relied on a canonical response function.
Autocorrelation correction was estimated with an autoregressive—
AR(1)—model and considered by prewhitening the data. A high-
pass filter was applied (discrete cosine transform with a cutoff of
128 Hz) to eliminate low-frequency noise components. The control
task was analyzed using the same procedure as described above.

In the group analysis, we used the parameters (contrast images) of
the individual analysis of each participant to perform a 2 (expertise:
experts, novices) X 2 (type of position: normal, random) ANOVA,
including nonsphericity correction (see Friston, Ashburner, Kiebel,
Nichols, & Penny, 2007), for the chess and control tasks, separately.
Both main effects (expertise and type of position) and their interaction
were based on ¢ statistics, corrected for multiple comparisons across
the whole brain. We set the significance level at p < .05 (familywise
error correction for multiple comparisons) and considered clusters
with a size of five or more voxels only.

We defined regions of interest (ROIs) comprising the signifi-
cantly activated voxels for the main effect of expertise and the
interaction between expertise and type of position in the chess task.
For illustrative and descriptive purposes, we used the MarsBaR
SPM Toolbox (Marseille ROI Toolbox, Version .041) to extract
the parameter estimates (beta weights) for the normal and random
positions in the chess task for each participant (see Poldrack &
Mumford, 2009). Although this only confirms the whole-brain
analysis and gives an overview over different conditions, of crucial
interest are the activations in these same regions in the control task.
Thus, the outcome of the chess-task ANOVA was used as an
independent functional localizer for defining ROIs for the exam-
ination of expertise and position-type effects in the nonchess
control task. Consequently, we used the same regions and the same
procedure to extract activations in the control task.

For graphical presentations of results, we used the SurfRend Tool-
box in SPMS5 extracting statistical maps, which were then overlaid
onto a standard template brain surface with FreeSurfer software
(Athinoula A. Martinos Center for Biomedical Imaging, Harvard
University, Cambridge, MA; http://surfer.amr.mgh.harvard.edu/).

Results and Discussion

Behavioral Data

Expert chess players needed only about half the time to enu-
merate knights and bishops in the chess task compared with
novices (see Figure 2A); a two-way Expertise (experts, novices) X

A
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B Random

Reaction time (s)
w

0 -
Novice Expert Novice
CHESS CONTROL
B 20 ONormal
B Random
15
£ 10
S
S
=
wos
0 -
Expert Novice Expert Novice
CHESS CONTROL
Figure 2. A: Time in seconds experts and novices needed to complete the

chess and control tasks depending on the type of position. B: Percentage of
errors made by experts and novices in completing the chess and control
tasks depending on the type of position. Blue color represents experts; red
color represents novices. Error bars indicate the standard error of the mean.
*p < .05 in a two-tailed ¢ test for dependent samples.

Type of Position (normal, random) ANOVA for the chess task
produced a significant expertise effect, F(1, 21) = 26.7, p < .0001.
The type of position also played a role, as the players were faster
on normal positions, F(1, 21) = 6.3, p = .021. This difference was
exclusively driven by experts as the difference between normal
and random positions was not pronounced among novices: The
ANOVA for the Expertise X Type of Position interaction in the
chess task yielded F(1, 21) = 3.6, p = .071; the ¢ test for
dependent samples for the differences between normal and
random positions was significant only for experts, #(7) = 6.2,
p < .001. In the control task, however, there were no significant
differences.

The pattern of errors was similar to the pattern for reaction
times. In the chess task, experts tended to make fewer errors than
did novices, although this difference did not quite reach signifi-
cance (see Figure 2B): two-way ANOV A for the expertise effect in
the chess task, F(1,21) = 3.3, p = .082. Players made fewer errors
on normal positions—ANOVA for type of position in the chess
task, F(1, 21) = 4.6, p = .044—but the difference was driven
mostly by experts—ANOVA for the Expertise X Type of Position
interaction in the chess task, F(1, 21) = 2.4, p = .131; normal
versus random positions among experts, #(7) = 3.4, p = .011. In
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the control task, however, none of the effects or interactions were
significant.

Our behavioral data show that the perceptual advantage of
experts is closely related to the use of both object and pattern
recognition processes. Experts were not faster than novices in the
control task, indicating that the general speed of perceptual and
response-related processes was comparable between both groups.
The differences are thus related to the use of chess knowledge in
the chess task. Experts were also affected by randomization,
whereas the effect was absent in novices. Experts’ performance in
the chess task on normal positions was also helped by the process-
ing of relations.

It should be noted that experts still kept a considerable advan-
tage over novices on random positions in the chess task. This is
surprising given that previous studies using the recall paradigm
(e.g., Chase & Simon, 1973; Gobet & Simon, 1996a) showed that
experts are much more affected by randomization than was the
case here in the enumeration paradigm. Previous studies also
demonstrated that experts can use their pattern knowledge to some
extent even in random positions, because some objects form fa-
miliar relations by chance (Gobet & Simon, 1996a). It is more
likely, however, that experts’ advantage on random positions is
related to the nature of the enumeration task. In this task, partic-
ipants need to identify single objects repetitively to count them
correctly, whereas the recall task requires the identification of all
objects on the board. It is reasonable to assume that the enumer-
ation task draws more heavily on object-recognition processes,
whereas the recall task engages more pattern-recognition pro-
cesses. Random positions disturb the complex relations between
objects, thus making it difficult to fully use pattern recognition.
The relocated objects in random positions, however, kept the same
defining features that make cognitive mechanisms of object iden-
tification also applicable to random positions (Kiesel et al., 2009;
Saariluoma, 1990).

Eye Movement Data

The reaction times indicate that a highly selective mechanism
might be responsible for experts’ superior performance, but they
do not reveal what kind of mechanism is at work. Recordings of
eye movements have often been used to gain insight into problem-
solving strategies used by experts and novices (Bilali¢ et al.,
2008c; Charness, Reingold, Pomplun, & Stampe, 2001; De Groot
et al.,, 1996; Gobet et al., 2004; Reingold & Charness, 2005;
Reingold, Charness, Pomplun, & Stampe, 2001; Reingold, Char-
ness, Schultetus, & Stampe, 2001). Figure 3A presents individual
examples of eye movements of an expert and a novice in the chess
task. The top left position in Figure 3A depicts trajectories (lines)
and fixations (circles) of the expert (blue color) on a normal
position. Video F1 shows the depicted eye movements of the
expert in this position in real time and can be seen in the supple-
mental materials. The top right position in Figure 3A displays the
performance of a novice (red color) on the same normal position
(corresponding Video F2). The bottom left position in Figure 3A
corresponds to the eye trajectories and fixations of an expert on a
random position (corresponding Video F3), whereas the bottom
right position corresponds to the eye movements of a novice on the
same random position (corresponding Video F4). To identify the
relevant pieces in the normal position, the expert focused solely on

the objects of interest (bishops and knights, highlighted in green in
Figure 3A) and disregarded other objects. In contrast, the novice
checked almost every single object in the position to be sure how
many relevant objects there were. These differences were, how-
ever, less pronounced in the random position for the same novice
and expert. In contrast, the patterns of eye movements were similar
in the control task (see Figure 3B; see also corresponding Videos
F5-F8). Similar patterns of results were obtained when we plotted
the location of all fixations for all experts and novices in the chess
and control tasks on these particular normal and random positions
(see Figures 3C and 3D).

The fixations and their durations (see the supplemental materi-
als) confirm the behavioral results, but they still do not reveal the
mechanism behind experts’ superior performance. We thus calcu-
lated the distance of experts’ and novices’ fixations from the
nearest object of interest (chess pieces that needed to be counted)
across all normal and random positions in the chess and control
tasks (see Figure 4A). In the chess task, experts generally fixated
nearer to the objects of interest than did novices: ANOVA for
expertise in the chess task, F(1, 9) = 5.2, p = .048. On the one
hand, when experts looked for the objects of interest in normal
positions, they fixated closer to the objects of interest than when
they dealt with random positions. Novices, on the other hand,
could not get much advantage from normal positions: ANOVA for
the Expertise X Type of Position interaction in the chess task, F(1,
9) = 9.7, p = .012; ANOVA for the type of position, F(1, 9) =
24.2, p = .001; normal versus random positions among experts,
t(4) = 4.9, p = .008. The absence of the expertise and position-
type effects in the control task is not surprising, given that players
had to investigate all pieces to count them correctly.

The eye movements suggest that one advantage of experts lies in
their pattern knowledge, which can be predictively used to focus
exclusively on the objects of interest. The pattern recognition
processes were thus a possible reason why experts had their fastest
reaction times on normal positions (see Figure 2). To get a better
grasp of the pattern recognition mechanism, we analyzed the initial
and subsequent (first) fixation among experts and novices in both
tasks and both positions.® If the pattern recognition mechanism
enabled experts to immediately grasp the essence of the position
during the initial fixation, then we would expect a major improve-

2 Experts made more errors than did novices on normal positions, but the
difference was not significant. Previous studies (Saariluoma, 1985, 1990)
reported similar effects, which probably reflect automatic activation of
chess knowledge structures. Although the control task does not require
chess knowledge, normal positions feature chess pieces and their typical
relations, which may activate chess knowledge structures. This activation
interferes with the task, which results in more errors and longer reaction
times (see Figures 2A and 2B). Similarly, there was a trend, albeit not a
significant one, for experts to have more CoS activation on normal posi-
tions than on random ones in the control task too. Some previous neuro-
imaging studies also reported the phenomenon of automatic activation of
expert knowledge regardless of the explicit task (e.g., Gauthier, Skudlarski,
Gore, & Anderson, 2000). In this particular case, although the trend was
visible, the explicit instruction to use domain-specific knowledge made
much bigger differences than did the automatic activation of the same
knowledge (see also Harel, Gilaie-Dotan, Malach, & Bentin, in press).

3 We are grateful to Eyal Reingold for suggesting this analysis.
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Figure 3. A. An example of the eye-movement trajectories (lines) with fixations (represented by circles; their
individual sizes denote the duration of fixation) for an expert (blue color, left column) and a novice (red color,
right column) on a normal position (upper row) and a random position (lower row) in the chess task. The objects
of interest are highlighted by green squares (for illustrative purposes only). B: Eye-movement trajectories with
fixations in the control task. The objects of interest are all pieces on the board. C: All fixations of all experts (blue
dots) and novices (red dots) on a normal position (upper row) and a random position (lower row) in the chess
task. The objects of interest are highlighted by green squares (for illustrative purposes only). D: All fixations of
all experts and novices in the control task. The objects of interest were all pieces on the board. Five experts and

six novices were included in the analyses.

ment in the accuracy of the subsequent (“first”) fixation.* Indeed,
Figure 4C shows that only experts could make immediate use of
the pattern recognition in the normal position, as the distance to the
next object of interest was considerably smaller in the subsequent
(first) fixation than in the initial one. On the one hand, experts
could not use pattern recognition in random positions, because the
patterns of relations were disrupted through randomization. Nov-
ices, on the other hand, could not apply pattern recognition in
either position type, because they lacked the necessary knowledge
structures. A three-way Expertise (experts, novices) X Type of
Position (normal, random) X Fixation (initial, first) ANOVA for
the chess task produced a three-way interaction that approached
significance, F(1,9) = 4.5, p = .063; initial versus first fixation on
normal positions among experts, #(4) = 3.2, p = .032. Experts
were not generally better than novices at directing their eye move-
ments toward objects in general, because there were no differences

in the chess task between groups when the distances from any
object, irrespective of its relevance, for the initial and subsequent
(first) fixation were measured (see the supplemental materials).
Both experts and novices put the first fixation in the chess task on
normal positions at approximately the same distance from an
object. The only difference is that the objects attended to by
experts were mostly objects of interest, unlike the objects attended
to by novices. If we apply the same pattern-recognition process

4 The initial fixation usually falls at the middle of the stimulus because
of the previous cross at the same position. Even if some participant tried to
immediately focus somewhere else, it is difficult to predict where the
objects of interest would be, even on normal positions. Consequently, there
should have been (and, indeed, there were) no big differences in the initial
fixation.
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Figure 4. A: Average distance (in pixels) from the nearest objects of interest for experts and novices in the
chess and control tasks depending on the type of position (normal or random). B: Average distance (in pixels)
from the nearest object irrespective of its importance. C: Average distance (in pixels) from the nearest objects
of interest for experts and novices in the chess task, depending on the type of position (normal or random), for
the initial and the subsequent (first) fixation in the chess task. D: Average distance from the nearest objects of
interest for the initial and the subsequent (first) fixation in the control task. Error bars indicate the standard error
of the mean. * p < .05 in a two-tailed 7 test for dependent samples.

several times, as was necessary to enumerate the objects of interest
in the chess task, we can understand why experts needed half the
time on normal positions, compared with novices. Further evi-
dence for a domain-specific and not general advantage in pattern
recognition is given by the control task: Both experts and novices
were similarly accurate with both position types in the subsequent
fixation (see Figure 4D).

Although the pattern-recognition advantage disappeared on ran-
dom positions, as indicated by the distance measures in Figures 4A
and 4C, experts were nevertheless considerably faster than novices
(see the reaction time data in Figure 2A). This seemingly para-
doxical result is explained by experts’ superior skill in differenti-
ating between individual objects. On the one hand, experts gener-
ally do not fixate on the objects exactly, but their vast knowledge
about individual chess pieces (Kiesel et al., 2009; Saariluoma,
1990) enables them to identify these symbols even when they
focus a few pixels away from the actual object (Charness et al.,
2001; Reingold, Charness, Pomplun, & Stampe, 2001). Novices,

on the other hand, tend to fixate on the pieces directly, because
their lack of knowledge about individual pieces renders the use of
parafoveal vision inefficient. This is also evident in the distance
measures from the nearest object, irrespective of its relevance,
during the whole duration of a trial (see Figure 4B). Experts
needed fewer fixations and consequently less time to find the
target objects on random positions, because they could make the
best even out of the fixations that did not fall exactly at the objects
of interests: ANOVA for expertise in the chess task, F(1, 9) =
14.9, p = .004; the data in the control task are the same as the data
in Figure 4A.

Neuroimaging Data

The eye movement analysis shed light on the cognitive mech-
anism behind experts’ superior performance on the chess task.
Experts’ extensive knowledge facilitates immediate pattern recog-
nition by directing experts toward the relevant objects and allow-
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ing them to ignore irrelevant ones. Experts, as compared with
novices, spent less time and wandered less on the normal positions,
where the common object location and typical relations between
them were preserved. In contrasts, in random positions, where the
typical relations were disturbed by scattering pieces around, ex-
perts could not apply their knowledge-driven predictions to guide
their perceptual focus. Nevertheless, experts’ greater knowledge
about individual objects enabled their superior object recognition,
which in turn resulted in superior performance even on random
positions. Here we identified the brain structures associated with
experts’ remarkably efficient use of knowledge. Of particular
interest were the main effect of expertise and the interaction in the
chess task. The areas that are generally more activated in experts
than in novices in both normal and random positions could be seen
as the neural basis of experts’ ability in differentiating and iden-
tifying individual objects, that is, object recognition. The areas that
also react to randomization, in particular among experts, would
shed light on the neural correlates of pattern-recognition mecha-
nisms that are driven by complex (chess) knowledge structures.
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Using fMRI in a whole brain analysis, we found a number of
brain areas that were significantly more activated in experts than in
novices in the chess task across both positions (for the main effect
of expertise, see Figure 5). This network included (a) right collat-
eral sulcus (see Figure 5 for MNI coordinates); (b) left posterior
middle temporal gyri (pMTG); (c) right occipitotemporal junction
(OTJ); (d) the supplementary motor area (SMA) on the right side,
also spreading partly to the left side; (e) left primary motor cortex
(M1); and (f) left anterior insula (see Figure 5). In contrast, normal
and random positions did not produce different activations in the
chess task across groups (main effect of position). Further,
the main effects and their interaction were not significant in the
nonchess control task.

To illustrate the activation levels in the brain areas that show a
main effect of expertise in the chess task, we extracted the param-
eter estimates in these areas for each condition in both chess and
control tasks and plotted the averages in Figure 5 (see Poldrack &
Mumford, 2009). As expected, given that all of these areas were
selected on the basis of their showing a significant main effect in
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Figure 5. Brain regions more activated in experts than in novices in the chess tasks (main effect of expertise,
whole brain analysis; p < .05 corrected for multiple comparisons [familywise error], containing at least k = 5
voxels) presented on the lateral (top) and medial (bottom) surface of an inflated brain (middle part of the figure).
The activation from these regions is extracted and presented in the graph for both chess and control tasks.
rCoS = right collateral sulcus (Montreal Neurological Institute coordinates: X = 28, Y = —40, Z = —8);
pMTG = left middle temporal gyri (X = —47, Y = —69, Z = 8); OTJ = occipitotemporal junction (X = 48,
Y = =69, Z = 15); SMA = supplementary motor area (X = 4, Y = 6, Z = 46); M1 = primary motor cortex
(X = —=57,Y = —1, Z = 35); Insula = left anterior insula (X = —34, Y = 26, Z = 0). Blue color represents
experts; red color represents novices. Error bars indicate the standard error of the mean. * p < .05 in a two-tailed

t test for dependent samples.
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the whole-brain fMRI analysis of differences between experts and
novices in the chess task, each single area also showed this main
effect (see the supplemental materials for specific comparisons).
The same regions were then selected for examining expertise and
type-of-position effects in the nonchess control task. Here, the
ANOVA yielded neither an expertise effect, an effect of position
type, nor an interaction in any area of interest. The disappearance
of the expertise effect in the control task implies that the effect is
the consequence of the task executed and not of the stimuli, which
were the same in both tasks (but see footnote 1).

The significantly higher activations in the frontal lobe (insula,
M1, and SMA) probably result from experts’ general higher effi-
ciency in the chess task. Although there were no differences in the
eye movement parameters in the first second modeled in the fMRI
analysis, experts identified more objects of interest in that second
than did novices, which lead to (a) an increased counting fre-
quency (inner speech) and (b) more frequent motor preparation, as
the trials were more often closer to completion. SMA and M1
activations are generally attributed to processing or preparation of
motor responses (Nachev, Kennard, & Husain, 2008), whereas the
insula is activated during motor and speech preparation (Acker-
mann & Riecker, 2004). The analogous differences between nor-
mal and random positions in the chess task confirm these assump-
tions. In all cases, normal positions elicited more activation than
did random ones in experts, whereas they did not differ in novices.

A B

Right Left 27
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The activations in the temporal lobe (OTJ, pMTG, and CoS) are
probably related to the advantage that experts have over novices in
object and pattern recognition. The activations in the pMTG and
OT]J were similar on the normal and random positions among the
experts in the chess task, whereas normal positions activated more
right CoS than did random ones. Given that the left pMTG and
OTJ were not differently activated in normal and random posi-
tions, they are most likely responsible for the discrimination be-
tween pieces, which was necessary in both normal and random
positions. In contrast, the right CoS was sensitive to the random-
ization, which indicates that it is most likely engaged in pattern
recognition: possible on normal positions but difficult, if not
impossible, on random positions.

The whole-brain analysis of the interaction between expertise
and position type in the chess task supports the claim that the right
CoS is involved in pattern recognition. Beside the part of the right
middle CoS area that was also significant in the main expertise
effect, the equivalent part of left middle CoS also showed sensi-
tivity to the interaction (see Figure 6A). Just like in the previous
analysis, we extracted the average activation levels relative to
baseline across all voxels activated in these two regions to examine
the pattern of results in more detail (see the Method section). As
expected, the randomization influenced the activation of this CoS
region among experts but not among novices in the chess task (see
Figure 6B). When dealing with normal positions, experts’ CoSs
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Figure 6. A: The collateral sulci (CoSs) presented on the ventral surface of an inflated brain. The areas on both
sides were significant at p < .05 (familywise-error corrected) when the whole-brain analysis was performed on
the interaction Expertise X Type of Stimuli in the chess task. The areas were used to extract the activation
patterns in the chess and nonchess control tasks for each type of position. The exact Montreal Neurological
Institute coordinates for the peak values of activated areas in the chess task were X = =33, Y = —39,Z = —12,
and X = 30, Y = —42,Z = —9, for the left and right CoSs, respectively. There were 16 voxels activated in the
left CoS and six voxels in the right CoS. B: Activation levels (betas) in the left and right CoSs in the chess and
control tasks for experts and novices depending on the type of position. Blue color represents experts; red color
novices. Error bars indicate the standard error of the mean. * p < .05 in a two-tailed 7 test for dependent samples.
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were more activated than when dealing with random positions. In
contrast, there was no such difference in the novices.

This pattern of results just confirms the whole-brain analysis,
which identified that only these bilateral regions were significantly
sensitive to the use of complex chess knowledge (interaction
between expertise and position type in the chess task). Of crucial
importance, however, is that the same regions did not show the
same pattern of results in the nonchess control task featuring
the same stimuli. The randomization did not have an effect on the
activation of the CoS, nor was the activation greater for experts
than novices in the CoS (see Figure 6B). This indicates that the
significant differences among experts on normal and random po-
sitions in the chess task are not a consequence of greater famil-
iarity with normal positions. Experts were also more familiar than
novices were with the normal positions in the control task, but their
CoSs were not differently sensitive to normal and random posi-
tions. Consequently, the difference in the CoSs activation between
normal and random positions in experts is the consequences of the
cognitive demands in the chess tasks, that is, the application of
complex pattern recognition processes.

The activation changes in the left pMTG, right OTJ, and bilat-
eral CoS followed the pattern of behavioral and eye movement
results. Although it is tempting to treat these three levels of
evidence as independent measures (e.g., Henson, 2005), a reason-
able question is how they are related. It is highly probable that the
activations in the inferior and lateral temporal lobe are a conse-
quence of the differences in behavioral and eye-movement re-
sponses. We do not believe, however, that the brain activations are
solely related to the differences in time and attended parts of the
stimuli among experts and novices. Although it is difficult to
prove, given the correlational nature of the relationship between
behavioral, eye-movement, and fMRI data, our results point out a
close and plausible connection between brain activations and spe-
cific cognitive processes applied to the stimuli. The brain activa-
tions are related to the first second of each trial and not its full
duration, during which the largest differences in time and amount
of attended material were found. There were no differences in the
number and duration of fixations between experts and novices on
both position types in the chess task during the first second (see the
supplemental materials). Although experts and novices looked at
different parts of the stimuli, because experts were focusing more
closely on the objects of interest, both groups looked at the same
kind of stimuli (chess objects on a chess board). And yet, there
were marked differences in the activity levels in the temporal
regions between experts and novices in the domain-specific task.
This result is difficult to explain without assuming that the cog-
nitive processes were responsible for the differences in the pattern
of eye movements. When these processes were of no use in the
control task, the differences disappeared. Note that even in the
control task, experts and novices also attended to different parts of
the stimulus, depending on their strategies. Nevertheless, there
were no differences in the activation levels, and the activations
among experts tended to be much smaller than in the chess task.
This pattern of results indicates that the differences in brain activ-
ity were probably related not to the differences in stimulus famil-
iarity per se or to attending to different aspects of the stimuli but
most likely to the cognitive processes that produced these differ-
ences.

General Discussion

In this study, we used the classic expertise approach along with
a mixture of behavioral and neuroimaging techniques to uncover
the cognitive mechanisms and neural underpinnings of skilled
object and pattern recognition. Experts’ superiority in simple ob-
ject recognition enabled them to be more efficient than novices in
a task that required enumeration of certain types of objects. Eye
movement analyses suggested that experts’ knowledge about in-
dividual objects is responsible for their superior performance.
Experts do not necessarily need to fixate directly on domain-
specific objects to identify them but can make use of their parafo-
veal vision. Brain imaging suggested that this superiority in simple
object recognition is closely related to bilateral activity in the
vicinity of the occipitotemporal junction. At the same time, ex-
perts’ superiority on the chess task was also related to their
extensively developed knowledge structures on domain-specific
patterns. Experts were particularly efficient in normal positions,
where the relations between pieces were intact. Once we disturbed
these relations by placing the chess pieces in random positions,
experts’ performance dropped significantly, indicating that experts
could not use their superior complex pattern recognition processes
anymore. The recordings of eye movements exposed the highly
efficient mechanism that drives experts’ superior performance on
normal positions. Whereas experts’ superior pattern recognition
enabled them to exclusively focus on relevant features, novices
examined the whole situation to arrive at the same result. The
neural correlates of this remarkably efficient skill were found
bilaterally in the middle part of the CoS.

Although the randomization of stimuli played a role in experts’
performance in the enumeration task, it affected them to a lesser
extent than has been found in other paradigms such as recall tasks
(e.g., Chase & Simon, 1973; Gobet & Simon, 1996a). Pattern
recognition is arguably a more complex and more important pro-
cess, but its purpose is often inextricably related to object recog-
nition. In the chess enumeration task, pattern and object recogni-
tion were both required: Pattern recognition guided the fast and
efficient initial orientation toward objects of interest, whereas
object recognition enabled their efficient identification. Our results
thus underline the importance of object recognition processes that
have often been neglected in theories of expertise (e.g., Chase &
Simon, 1973; Gobet & Simon, 1996b).

Experts’ superiority in chess-specific object identification did
not seem to be related to the differences in activity in the posterior
IT cortex and fusiform gyrus, brain structures generally believed to
be connected to the processing of visual features and even identi-
fication of whole isolated objects (e.g., Epstein & Kanwisher,
1998; Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999; Kan-
wisher, McDermott, & Chun, 1997). Instead, experts’ superiority
was connected to the bilateral temporal areas. It is known that the
left pMTG supports the recognition of verbally or visually pre-
sented manmade objects, such as tools, with characteristic action-
related function (Noppeney, Price, Penny, & Friston, 2006; Tranel,
Martin, Damasio, Grabowski, & Hichwa, 2005). Individual chess
objects have functions reinforced through chess rules. Our fMRI
findings thus confirm previous behavioral tests (Kiesel et al., 2009;
Saariluoma, 1990) in that experts’ superiority in the recognition of
individual objects mainly comes from their greater functional
knowledge of chess objects, not knowledge about specific form.
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This implication supports the view that the knowledge about the
function of an object plays an important role in its recognition
(Allport, 1984; Shallice, 1988; Warrington & Shallice, 1984). Our
results also indicate that the left pMTG is important in the recog-
nition of objects that are not tools but that have clearly specified
functions. The direct implication is that the pMTG is not important
for the category of tools but rather for object properties such as
their function (Boronat et al., 2005; Canessa et al., 2008).

However, our results imply that experts’ development of object-
recognition processes is associated not only with left lateral areas
but also with additional right lateral areas around the OTJ. This is
a surprising finding given that the right lateral hemisphere, unlike
its left counterpart, is usually not engaged in the recognition of
everyday manmade objects (e.g., Lewis, 2006). One possibility is
that the development of the ability to recognize objects and their
functions does not stop with the left lateral areas commonly found
for everyday objects people familiar with to a similar extent. In
other words, truly superior object recognition found in experts may
require qualitatively different cognitive processes that engage ad-
ditional brain areas. This intriguing possibility remains a specula-
tion that requires further studies using the expertise approach and
manmade objects. The notion is, however, consistent with similar
discussions about the relationship between increased task diffi-
culty and the additional recruitment of homologous regions of the
opposite hemisphere in other cognitive domains such as attention
(e.g., Helton et al., 2010; Nebel et al., 2005).

The bilateral middle parts of the CoS were identified as the
neural basis of chess-specific pattern recognition, which enables
experts to focus on the relevant and ignore the irrelevant aspects of
a complex stimulus. The CoS is part of IT, which, in general,
supports visual recognition processes but, in particular, supports
those with multiple elements (Haxby et al., 1991; Lerner, Hendler,
Ben-Bashat, Harel, & Malach, 2001). The areas of IT responsible
for visual expertise are developed and fine-tuned by maturation
processes that are inextricably linked to stimulus exposure and
learning (Grill-Spector, Golarai, & Gabrieli, 2008; Wong, Palmeri,
Rogers, Gore, & Gauthier, 2009). Chess is a complex visual game
that requires years to master (Campitelli & Gobet, 2008; Charness,
Tuffiash, Krampe, Reingold, & Vasyukova, 2005), and our results
indicate that the development of chess expertise is also tied to a
particular brain region in the inferior temporal lobe. The middle
part of the CoS belongs to the parahippocampal cortex (PHC),
which is important for episodic memory (Diana, Yonelinas, &
Ranganath, 2007). However, the middle CoS also forms a part of
the parahippocampal place area (PPA), which is involved in the
perception of places and scenes (Epstein, 2008; Epstein & Kan-
wisher, 1998).

There is currently a controversy about the exact function of the
PHC/PPA. According to one theory, the PHC/PPA is particularly
activated in a scene because it encodes its spatial layout, indepen-
dent of its component elements and their identity (Epstein, 2008).
Another theory argues that the PHC/PPA is not specifically related
to scenes per se but to the activation of relations that the elements
in those places and scenes form (Aminoff, Schacter, & Bar, 2008;
Bar, 2004; Bar & Aminoff, 2003; Bar, Aminoff, & Ishai, 2008;
Bar, Aminoff, & Schacter, 2008). On the one hand, Bar et al.
showed that the PPA is more responsive to scenes with numerous
objects than to scenes with only a handful of objects (Bar, Amin-
off, & Schacter, 2008). Moreover, isolated objects elicit even less

activation in the PPA, but there are subtle contextual differences
between different objects. Objects (e.g., a cow) found in typical
contexts (e.g., valley, grass) that are strongly associated with other
objects through their relations elicit more activation than do ob-
jects that do not form specific relations (e.g., a personal camera,
which can be found almost anywhere). Epstein and Ward (2010),
on the other hand, demonstrated that these effects were absent
when the presentation time of objects was rather short, which may
indicate that visual imagery processes may be responsible for the
contextual effect.

We believe that our experiment provides an example of how
fMRI studies featuring the expertise approach in conjunction with
behaviorally well characterized cognitive processes may inform
researchers about the function of the brain areas related to the
above-mentioned processes. Chess stimuli have similarities with
places and scenes in that both are composed of variable multiple
elements. Scenes and places include individual objects, whereas
chess positions have an 8§ X 8 chess board and individual chess
pieces located on it. Just like the individual elements in scenes,
chess pieces in positions are never found in isolation, and they
inevitably form relations. These relations are used to form repre-
sentations of these complex stimuli (e.g., a light switch is usually
not located on the ceiling and a bedroom usually does not contain
a washing machine) and present essential knowledge about the
world (Biederman et al., 1982; Gobet et al., 2001; Shank &
Abelson, 1977). The main characteristic of every visual expertise
is the recognition of patterns of relations formed by domain-
specific elements (Gobet & Simon, 1996b). This enables experts to
grasp the essence of the situation in seconds and inevitably leads
to appropriate actions (e.g., a person will not look at the floor if he
or she wants to switch on the light in a room). The use of clearly
specified tasks enabled us to disentangle the mere perception of
chess stimuli in the control task from the use of complex expertise
skills through processing of complex relations between objects in
the chess task. When experts could use this complex pattern-
recognition process in the chess task, the CoSs were clearly more
activated than when experts were merely perceiving the same
stimuli in the control task (see Figure 6B). When these relations
between pieces were disturbed on the random positions, the CoSs
were significantly less activated in the chess task among experts.
Specifically, this suggests that the function of this part of the brain
is related to the complex pattern recognition processes in chess.
More generally, it means that this area is closely connected to
encoding and retrieving the objects and their relations in their
typical environment.

There is indirect evidence that the PPA/PHC indeed supports
relations between environmental elements. Campitelli et al. (2007)
used the classic recall paradigm to show that only the left side of
the middle CoS was differently sensitive to normal and random
chess positions in experts. In other words, a different paradigm, a
gold standard in the expertise research for identifying knowledge
structures (Chase & Simon, 1973; Gobet & Simon, 1996b), found
an almost identical location for the utilization of pattern recogni-
tion. There is also evidence that scrambled places engage the PPA
significantly less than intact ones do (Epstein & Kanwisher, 1998).
Another indication that the PPA is responsible for relations be-
tween individual objects is the finding that the interior of rooms
filled with furniture elicited the most activation in the PPA, even
more than naturalistic settings (see Figure 6 in Bar & Aminoff,



740 BILALIC, LANGNER, ERB, AND GRODD

2003). Moreover, rooms with typical objects elicit more PPA
activation than do empty rooms (Bar, Aminoff, & Schacter, 2008;
Epstein & Kanwisher, 1998). A reasonable explanation would be
that people are much more familiar with rooms and in particular
with relations between objects typically found in them than with
any particular naturalistic setting. A definitive verdict on this
controversy would need a direct manipulation of object relations in
the environment (see, e.g., Mandler & Johnson, 1976; Mandler &
Parker, 1976; Mandler & Ritchey, 1977) together with an inde-
pendent localizer (see Friston, Rotshtein, Geng, Sterzer, & Hen-
son, 2006; Saxe, Brett, & Kanwisher, 20006).

There are certainly many aspects in skilled performance of
complex cognitive tasks, such as search strategies (Bilali¢,
McLeod, & Gobet, 2008a; Burns, 2004; van Harreveld, Wagen-
makers, & van der Maas, 2007) or the decision-making process
(Bilali¢ et al., 2008b, 2008c, 2009; Forstmann et al., 2008; Gobet
et al., 2004; van der Maas & Wagenmakers, 2005), that need to be
considered when trying to make a complete picture of expertise.
Most researchers agree, however, that pattern recognition based on
previously stored knowledge is one of the main engines behind
experts’ superior performance (Chase & Simon, 1973; De Groot,
1978; Ericsson & Lehmann, 1996; Gobet & Simon, 1996b; Saari-
luoma, 1995). Our results show that object recognition, a basic
process that is often neglected, also plays an important role in
experts’ performance. Most important, our study demonstrates the
advantage of the concurrent application of different techniques in
investigating the interplay of these perceptual and mnemonic
mechanisms, which form the core of human cognition (Biederman
et al., 1982; Gobet et al., 2001; Shank & Abelson, 1977). The
reaction-time and eye-movement data enabled us to demonstrate
the cognitive mechanisms behind one of the most impressive
skills, whereas fMRI data substantiated them by pinpointing their
neural basis. Using differently skilled individuals, we were able to
gain important insights into the functioning of human cognition.
Experts’ object recognition may engage new brain regions in
addition to those commonly associated with everyday object rec-
ognition. The middle part of CoS seems to be the place where the
human brain accommodates the highly efficient pattern-
recognition mechanism in chess experts, but it may also be the area
that is generally associated with the encoding and retrieval of
complex relations between individual elements in a complex en-
vironment.

References

Ackermann, H., & Riecker, A. (2004). The contribution of the insula to
motor aspects of speech production: A review and a hypothesis. Brain
and Language, 89, 320-328.

Allport, D. A. (1984). Speech production and comprehension: One lexicon
or two? In W. Prinz & A. F. Sanders (Eds.), Cognition and motor
processes (pp. 209-228). Berlin, Germany: Springer-Verlag.

Amidzic, O., Riehle, H. J., Fehr, T., Wienbruch, C., & Elbert, T. (2001,
August 9). Pattern of focal gamma-bursts in chess players. Nature, 412,
603.

Aminoff, E., Schacter, D. L., & Bar, M. (2008). The cortical underpinnings
of context-based memory distortion. Journal of Cognitive Neuroscience,
20, 2226-2237.

Atherton, M., Zhuang, J., Bart, W. M., Hu, X., & He, S. (2003). A
functional MRI study of high-level cognition: I. The game of chess.
Brain Research Cognitive Brain Research, 16, 26-31.

Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5,
617-629.

Bar, M., & Aminoff, E. (2003). Cortical analysis of visual context. Neuron,
38, 347-358.

Bar, M., Aminoff, E., & Ishai, A. (2008). Famous faces activate contextual
associations in the parahippocampal cortex. Cerebral Cortex, 18, 1233—
1238.

Bar, M., Aminoff, E., & Schacter, D. L. (2008). Scenes unseen: The
parahippocampal cortex intrinsically subserves contextual associations,
not scenes or places per se. Journal of Neuroscience, 28, 8539—8544.

Baxter, M. G. (2009). Involvement of medial temporal lobe structures in
memory and perception. Neuron, 61, 667-677.

Biederman, I., Mezzanotte, R. J., & Rabinowitz, J. C. (1982). Scene
perception: Detecting and judging objects undergoing relational viola-
tions. Cognitive Psychology, 14, 143-177.

Bilali¢, M., McLeod, P., & Gobet, F. (2008a). Expert and “novice” prob-
lem solving strategies in chess: Sixty years of citing de Groot (1946).
Thinking and Reasoning, 14, 395-408.

Bilali¢, M., McLeod, P., & Gobet, F. (2008b). Inflexibility of experts—
Reality or myth? Quantifying the Einstellung effect in chess masters.
Cognitive Psychology, 56, 73-102.

Bilali¢, M., McLeod, P., & Gobet, F. (2008c). Why good thoughts block
better ones: The mechanism of the pernicious Einstellung (set) effect.
Cognition, 108, 652—-661.

Bilali¢, M., McLeod, P., & Gobet, F. (2009). Specialization effect and its
influence on memory and problem solving in expert chess players.
Cognitive Science, 33, 1117-1143.

Boronat, C. B., Buxbaum, L. J., Coslett, H. B., Tang, K., Saffran, E. M.,
Kimberg, D. Y., & Detre, J. A. (2005). Distinctions between manipula-
tion and function knowledge of objects: Evidence from functional mag-
netic resonance imaging. Cognitive Brain Research, 23, 361-373.

Brockmole, J. R., Hambrick, D. Z., Windisch, D. J., & Henderson, J. M.
(2008). The role of meaning in contextual cueing: Evidence from chess
expertise. Quarterly Journal of Experimental Psychology, 61, 1886—
1896.

Bukach, C. M., Gauthier, I., & Tarr, M. J. (2006). Beyond faces and
modularity: The power of an expertise framework. Trends in Cognitive
Sciences, 10, 159-166.

Burns, B. D. (2004). The effects of speed on skilled chess performance.
Psychological Science, 15, 442—447.

Campitelli, G., & Gobet, F. (2008). The role of practice in chess: A
longitudinal study. Learning and Individual Differences, 18, 446—458.

Campitelli, G., Gobet, F., Head, K., Buckley, M., & Parker, A. (2007).
Brain localization of memory chunks in chess players. The International
Journal of Neuroscience, 117, 1641-1659.

Campitelli, G., Gobet, F., & Parker, A. (2005). Structure and stimulus
familiarity: A study of memory in chess-players with functional mag-
netic resonance imaging. Spanish Journal of Psychology, 8, 238-245.

Campitelli, G., Parker, A., Head, K., & Gobet, F. (2008). Left lateralization
in autobiographical memory: An fMRI study using the expert archival
paradigm. The International Journal of Neuroscience, 118, 191-209.

Canessa, N., Borgo, F., Cappa, S. F., Perani, D., Falini, A., Buccino, G, . . .
Shallice, T. (2008). The different neural correlates of action and func-
tional knowledge in semantic memory: An fMRI study. Cerebral Cor-
tex, 18, 740-751.

Charness, N. (1992). The impact of chess research on cognitive science.
Psychological Research, 54, 4-9.

Charness, N., Reingold, E. M., Pomplun, M., & Stampe, D. M. (2001). The
perceptual aspect of skilled performance in chess: Evidence from eye
movements. Memory & Cognition, 29, 1146—-1152.

Charness, N., Tuffiash, M., Krampe, R., Reingold, E., & Vasyukova, E.
(2005). The role of deliberate practice in chess expertise. Applied Cog-
nitive Psychology, 19, 151-166.



MECHANISMS AND NEURAL BASIS BEHIND CHESS EXPERTISE 741

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive
Psychology, 4, 55-81.

De Groot, A. D. (1978). Thought and choice in chess (2nd ed.). New York,
NY: Mouton De Gruyter.

De Groot, A. D., Gobet, F., & Jongman, R. W. (1996). Perception and
memory in chess: Studies in the heuristics of the professional eye. Assen,
the Netherlands: Van Gorcum.

Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2007). Imaging recol-
lection and familiarity in the medial temporal lobe: A three-component
model. Trends in Cognitive Sciences, 11, 379-386.

Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial
temporal lobe and recognition memory. Annual Review of Neuroscience,
30, 123-152.

Elo, A. E. (1978). The rating of chess players, past and present. New York,
NY: Arco.

Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to
human spatial navigation. Trends in Cognitive Sciences, 12, 388-396.

Epstein, R., & Kanwisher, N. (1998, April 9). A cortical representation of
the local visual environment. Nature, 392, 598—-601.

Epstein, R. A., & Ward, E. J. (2010). How reliable are visual context
effects in the parahippocampal place area? Cerebral Cortex, 20, 294—
303.

Ericsson, K. A., Krampe, R., & Tesch-Roemer, C. (1993). The role of
deliberate practice in the acquisition of expert performance. Psycholog-
ical Review, 100, 363—406.

Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional per-
formance: Evidence of maximal adaptation to task constraints. Annual
Review of Psychology, 47, 273-305.

Ericsson, K. A., Nandagopal, K., & Roring, R. W. (2009). Toward a
science of exceptional achievement: Attaining superior performance
through deliberate practice. Annals of the New York Academy of Sci-
ences, 1172, 199-217.

Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J., von Cramon, D. Y.,
Ridderinkhof, K. R., & Wagenmakers, E.-J. (2008). Striatum and pre-
SMA facilitate decision-making under time pressure. Proceedings of the
National Academy of Sciences of the United States of America, 105,
17538-17542.

Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E., & Penny,
W. D. (2007). Statistical parametric mapping: The analysis of functional
brain images. London, United Kingdom: Academic Press.

Friston, K. J., Rotshtein, P., Geng, J. J., Sterzer, P., & Henson, R. N.
(2006). A critique of functional localisers. Neurolmage, 30, 1077-1087.

Gauthier, I., Anderson, A. W., Tarr, M. J., Skudlarski, P., & Gore, J. C.
(1997). Levels of categorization in visual recognition studied using
functional magnetic resonance imaging. Current Biology, 7, 645-651.

Gauthier, 1., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000).
Expertise for cars and birds recruits brain areas involved in face recog-
nition. Nature Neuroscience, 3, 191-197.

Gauthier, 1., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C.
(1999). Activation of the middle fusiform “face area” increases with
expertise in recognizing novel objects. Nature Neuroscience, 2, 568—
573.

Gobet, F., de Voogt, A., & Retschitzki, J. (2004). Moves in mind: The
psychology of board games. Hove, United Kingdom: Psychology Press.

Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C.-H., Jones, G., Oliver, L.,
& Pine, J. M. (2001). Chunking mechanisms in human learning. Trends
in Cognitive Sciences, 5, 236-243.

Gobet, F., & Simon, H. A. (1996a). Recall of random and distorted
positions: Implications for the theory of expertise. Memory & Cognition,
24, 493-503.

Gobet, F., & Simon, H. A. (1996b). Templates in chess memory: A
mechanism for recalling several boards. Cognitive Psychology, 31,
1-40.

Gobet, F., & Simon, H. (1998). Expert chess memory: Revisiting the
chunking hypothesis. Memory, 6, 225-255.

Gobet, F., & Simon, H. A. (2000). Five seconds or sixty? Presentation time
in expert memory. Cognitive Science, 24, 651-682.

Gobet, F., & Waters, A. J. (2003). The role of constraints in expert
memory. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 29, 1082-1094.

Grill-Spector, K., Golarai, G., & Gabrieli, J. (2008). Developmental neu-
roimaging of the human ventral visual cortex. Trends in Cognitive
Sciences, 12, 152-162.

Harel, A., Gilaie-Dotan, S., Malach, R., & Bentin, S. (in press). Top-down
engagement modulates the neural expressions of visual expertise. Cere-
bral Cortex.

Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M.,
Carson, R. E., ... Rapoport, S. I. (1991). Dissociation of object and
spatial visual processing pathways in human extrastriate cortex. Pro-
ceedings of the National Academy of Sciences of the United States of
America, 88, 1621-1625.

Helton, W. S., Warm, J. S., Tripp, L. D., Matthews, G., Parasuraman, R.,
& Hancock, P. A. (2010). Cerebral lateralization of vigilance: A function
of task difficulty. Neuropsychologia, 48, 1683—1688.

Henson, R. (2005). What can functional neuroimaging tell the experimental
psychologist? Quarterly Journal of Experimental Psychology: Human
Experimental Psychology, 58(A), 193-233.

Tacoboni, M., Lieberman, M. D., Knowlton, B. J., Molnar-Szakacs, I.,
Moritz, M., Throop, C. J., & Fiske, A. P. (2004). Watching social
interactions produces dorsomedial prefrontal and medial parietal BOLD
fMRI signal increases compared to a resting baseline. Neurolmage, 21,
1167-1173.

Johnson-Frey, S. H. (2004). The neural bases of complex tool use in
humans. Trends in Cognitive Sciences, 8, 71-78.

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face
area: A module in human extrastriate cortex specialized for face per-
ception. Journal of Neuroscience, 17, 4302—4311.

Kiesel, A., Kunde, W., Pohl, C., Berner, M. P., & Hoffmann, J. (2009).
Playing chess unconsciously. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 35, 292-298.

Koenig, P., Smith, E. E., Glosser, G., DeVita, C., Moore, P., McMillan, C.,
... Grossman, M. (2005). The neural basis for novel semantic catego-
rization. Neurolmage, 24, 369-383.

Lerner, Y., Hendler, T., Ben-Bashat, D., Harel, M., & Malach, R. (2001).
A hierarchical axis of object processing stages in the human visual
cortex. Cerebral Cortex, 11, 287-297.

Lewis, J. W. (2006). Cortical networks related to human use of tools. The
Neuroscientist: A Review Journal Bringing Neurobiology, Neurology
and Psychiatry, 12, 211-231.

Logothetis, N. K., & Sheinberg, D. L. (1996). Visual object recognition.
Annual Review of Neuroscience, 19, 577-621.

Mahon, B. Z., & Caramazza, A. (2009). Concepts and categories: A
cognitive neuropsychological perspective. Annual Review of Psychol-
ogy, 60, 27-51.

Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H.,
Kennedy, W. A., ... Tootell, R. B. (1995). Object-related activity
revealed by functional magnetic resonance imaging in human occipital
cortex. Proceedings of the National Academy of Sciences of the United
States of America, 92, 8135-8139.

Mandler, J. M., & Johnson, N. S. (1976). Some of the thousand words a
picture is worth. Journal of Experimental Psychology: Human Learning
and Memory, 2, 529-540.

Mandler, J. M., & Parker, R. E. (1976). Memory for descriptive and spatial
information in complex pictures. Journal of Experimental Psychology:
Human Learning and Memory, 2, 38—48.

Mandler, J. M., & Ritchey, G. H. (1977). Long-term memory for pictures.
Journal of Experimental Psychology, 3, 386-396.



742 BILALIC, LANGNER, ERB, AND GRODD

McGregor, S. J., & Howes, A. (2002). The role of attack and defense
semantics in skilled players’ memory for chess positions. Memory &
Cognition, 30, 707-717.

Mill, J. S. (1843). A system of logic. London, England: Parker.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological Review,
63, 81-97.

Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the
supplementary and pre-supplementary motor areas. Nature Reviews
Neuroscience, 9, 856—869.

Nebel, K., Wiese, H., Stude, P., de Greiff, A., Diener, H. C., & Keidel, M.
(2005). On the neural basis of focused and divided attention. Brain
Research Cognitive Brain Research, 25, 760-776.

Nichelli, P., Grafman, J., Pietrini, P., Alway, D., Carton, J. C., & Miletich,
R. (1994, May 19). Brain activity in chess playing. Nature, 369, 191.
Noppeney, U., Price, C. J., Penny, W. D., & Friston, K. J. (2006). Two
distinct neural mechanisms for category-selective responses. Cerebral

Cortex, 16, 437-445.

Onofrj, M., Curatola, L., Valentini, G., Antonelli, M., Thomas, A., &
Fulgente, T. (1995). Non-dominant dorsal-prefrontal activation during
chess problem solution evidenced by single photon emission computer-
ized tomography (SPECT). Neuroscience Letters, 198, 169-172.

Palmeri, T. J., & Gauthier, 1. (2004). Visual object understanding. Nature
Reviews Neuroscience, 5, 291-303.

Peissig, J. J., & Tarr, M. J. (2007). Visual object recognition: Do we know
more now than we did 20 years ago? Annual Review of Psychology, 58,
75-96.

Poldrack, R. A., & Mumford, J. A. (2009). Independence in ROI analysis:
Where is the voodoo? Social, Cognitive, and Affective Neuroscience, 4,
208-213.

Popper, K. R. (1968). The logic of scientific discovery. London, England:
Hutchinson.

Rayner, K. (1998). Eye movements in reading and information processing:
20 years of research. Psychological Bulletin, 124, 372—-422.

Reingold, E. M., & Charness, N. (2005). Perception in chess: Evidence
from eye movements. In G. Underwood (Ed.), Cognitive processes in
eye guidance (pp. 325-354). Oxford, England: Oxford University Press.

Reingold, E. M., Charness, N., Pomplun, M., & Stampe, D. M. (2001).
Visual span in expert chess players: Evidence from eye movements.
Psychological Science, 12, 48-55.

Reingold, E. M., Charness, N., Schultetus, R. S., & Stampe, D. M. (2001).
Perceptual automaticity in expert chess players: Parallel encoding of
chess relations. Psychonomic Bulletin & Review, 8, 504-510.

Saariluoma, P. (1985). Chess players’ intake of task-relevant cues. Memory
& Cognition, 13, 385-391.

Saariluoma, P. (1990). Chess players’ search for task-relevant cues: Are
chunks relevant? In D. Brogan (Ed.), Visual search (pp. 115-121).
London, United Kingdom: Taylor & Francis.

Saariluoma, P. (1995). Chess players’ thinking: A cognitive psychological
approach. London, United Kingdom: Routledge.

Saariluoma, P., Karlsson, H., Lyytinen, H., Teras, M., & Geisler, F. (2004).
Visuospatial representations used by chess experts: A preliminary study.
The European Journal of Cognitive Psychology, 16, 753-766.

Saxe, R., Brett, M., & Kanwisher, N. (2006). Divide and conquer: A
defense of functional localizers. Neurolmage, 30, 1088 —-1096.

Shallice, T. (1988). From neuropsychology to mental structure. Cam-
bridge, United Kingdom: Cambridge University Press.

Shallice, T. (2003). Functional imaging and neuropsychology findings:
How can they be linked? Neurolmage, 20(Suppl. 1), S146-S154.

Shank, R. C., & Abelson, R. P. (1977). Scripts: Plans, goals, and under-
standing. Hillsdale, NJ: Erlbaum.

Shannon, C. (1950). Programming a computer for playing chess. Philo-
sophical Magazine, 41, 256-275.

Simon, H. A., & Chase, W. G. (1973). Skill in chess. American Scientist,
61, 394-403.

Squire, L. R., & Zola-Morgan, S. (1991, September 20). The medial
temporal lobe memory system. Science, 253, 1380-1386.

Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual Review
of Neuroscience, 19, 109-139.

Tranel, D., Martin, C., Damasio, H., Grabowski, T. J., & Hichwa, R.
(2005). Effects of noun—verb homonymy on the neural correlates of
naming concrete entities and actions. Brain and Language, 92, 288-299.

Underwood, G. D. (Ed.). (2005). Cognitive processes in eye guidance. New
York, NY: Oxford University Press.

van der Maas, H. L. J., & Wagenmakers, E.-J. (2005). A psychometric
analysis of chess expertise. The American Journal of Psychology, 118,
29-60.

van Harreveld, F., Wagenmakers, E.-J., & van der Maas, H. L. (2007). The
effects of time pressure on chess skill: An investigation into fast and
slow processes underlying expert performance. Psychological Research,
71, 591-597.

Vicente, K. J., & Wang, J. H. (1998). An ecological theory of expertise
effects in memory recall. Psychological Review, 105, 33-57.

Warrington, E. K., & Shallice, T. (1984). Category specific semantic
impairments. Brain, 107, 829—-854.

Wason, P. C. (1960). On the failure to eliminate hypotheses in a conceptual
task. Quarterly Journal of Experimental Psychology, 12, 129-140.

Wilkinson, D., & Halligan, P. (2004). The relevance of behavioural mea-
sures for functional-imaging studies of cognition. Nature Reviews Neu-
roscience, 5, 67-73.

Wong, A. C., Palmeri, T. J., Rogers, B. P., Gore, J. C., & Gauthier, I.
(2009). Beyond shape: How you learn about objects affects how they are
represented in visual cortex. PloS ONE, 4, Article e8405. doi:10.1371/
journal.pone.0008405

Received November 20, 2009
Revision received May 13, 2010
Accepted June 1, 2010 =



